Showing posts with label Alex Malpass. Show all posts
Showing posts with label Alex Malpass. Show all posts

Friday, June 27, 2025

Lance Bush on justification, truth, and intuitions

 
27:15–29:15
 
"I don't believe in analytic accounts of justification either, I just completely reject them. I think what philosophers tend to be talking about is nonsense; I don't need justification for beliefs. I build a system on pragmatic grounds; I act based on what I expect to yield consequences that are conducive to my goals. I don't need any sort of extraneous permission. So I can give a pragmatic account of justification . . . but I'm talking about something that probably functionally and very much so philosophically is quite different from their accounts of justification. . . . It looks to me like a lot of analytic philosophers want some sort of permission to hold a view. I don't need reality's permission to hold a view. Let's say I'm a complete instrumentalist about my beliefs and I just go around believing things that are useful to me, and someone comes along and says, 'Yeah, but that belief isn't justified.' Okay. Well, what happens if I ignore it? Nothing. If you act like a pragmatist and ignore non-pragmatic conceptions of justification, there are no consequences to this. There's none! There aren't consequences. So I don't care, because I care about the consequences of my actions. So these non-pragmatic conceptions of justification are practically irrelevant and I don't care about them. Someone could say, 'Ah, but they're true!', okay well your truths don't matter to me. And if someone says 'Yeah but it doesn't matter if it doesn't matter because our quest is to figure out what's true', great, you're operating on a non-pragmatic conception of truth. I reject that as well, so I don't care about that either. . . . I don't believe in correspondence theory . . . So the whole thing is this system that they're operating within where I reject the whole system."
 
Continuing (29:38–30:29): 
 
"But for philosophers that take non-pragmatic approaches, I'm not obligated to abide by their metaphilosophy anymore than they're obligated to abide by mine. What you won't see me doing, at least I don't think so, is going around insisting that if you're not a pragmatist, like you're doing it wrong and you could only do things correctly if you're doing them the way I do. Now, there may be a sense in which I think that that's true, again pragmatically true—I mean it's almost trivially pragmatically true—but I try to be self-aware enough to realize when people are approaching philosophy from a different metaphilosophical perspective and be mindful of that fact and pivot to a discussion about metaphilosophy when it becomes appropriate. But a lot of people that work within conventional mainstream metaphilosophies, they don't see it as metaphilosophy, they're just doing philosophy and if you're not doing what they're doing, you're doing it wrong, you're not doing it at all."
 
I'm on board with the consequentialist aspects of what Lance is saying. And maybe a hard consequentialist position like the one I take leads to a pragmatic theory of truth and justification. I'm aware of Shamik Dasgupta's defense of a pragmatic theory of truth in this paper "Undoing the Truth Fetish." I have yet to analyze his arguments in that paper. So I don't know where I will land on the issue of truth and justification ultimately (or would land given enough time, research, thought, etc.).
 
Where I am at the moment though is that saying "My beliefs aren't justified and I don't care" is exactly as crazy as it sounds. I'm sure Lance can appreciate how it sounds to say "I don't need justification for my beliefs." It sounds, well, crazy. Saying "I don't need justification for beliefs" sounds like saying "I cannot be wrong" or "I don't need reasons to think that something is true to be convinced that it is true or is probably true." Again, that sounds crazy. But if I learned more about Lance’s views then maybe what he's saying wouldn't sound crazy at all.
 
It seems to me that at the heart of justification is this worry of arbitrariness: Imagine philosophers saying "I believe in a..." 
 
Philosopher 1: "...Correspondence theory of truth."
 
Philosopher 2: "...Pragmatic theory of truth." 
 
Philosopher 3: "...Deflationary theory of truth."
 
Philosopher 4: "...Primitive theory of truth." 
 
Philosopher 5: "...Semantic theory of truth."
 
Philosopher 6: "...Coherence theory of truth."
 
Philosopher 7: "...Performative theory of truth." 
 
Philosopher 8: "...Constructivist theory of truth."
 
Philosopher 9: "...Pluralist theory of truth." 

My goal is to believe what’s true about truth. Given that goal, which view of these should I take? Or should I take none of them? 

Here’s an idea: I will assign a number 1–9 to these views and use a random number generator to select a view randomly and I will believe whichever view is selected. You might complain that such a view would not be justified, but I don’t care. My beliefs can be totally arbitrary and that’s fine by me.

Not only would it be crazy to do this, it would be impossible. I can’t believe a philosophical view unless it makes sense to me. The "making sense" part is why reasons are needed. Reasons explain someone’s belief in x rather than y. Again, reasons are answers to 'why' questions, which makes them a kind of explanation. (So in cases where internal explanations aren't needed, like in non-propositional beliefs, reasons aren't needed. But those beliefs still have explanations, say in evolutionary terms.)

I think the problem of evil shows that a perfect being does not exist. Imagine if my true answer to someone asking why I think that is "I don’t care." That would be a bad answer. It would be so bad in fact that it would call into question whether I really believe what I claimed to believe, because, really, it’s not possible to have the answer "I don’t care" if I have reasons to believe my claim; the reasons are the answer! That's why, and how, I believe.
 
Being a bit tongue-in-cheek, imagine I said: I am converting to Nazism. Why? Well, haven't you heard? Justification is not needed! I don't need an answer. 
 
This would just be nonsense, because this is not how belief works. You can't convert to an intellectual position (like a philosophical or political position) without having an answer to the question of why you are convinced that that position is better than alternatives. (I’m not talking about social conversion, but doxastic conversion.) Whether the answer is justifying depends on whether the answer is any good. Does Lance think the answers moral realists give to challenges to moral realism are any good? I would guess not. So doesn't he accept the notion of good answers?

P.S. Before the above discussion, Lance talks about and denies the reality of intuitions, or as Huemer defines calls them, "intellectual seemings."
 
Curiously, within the quote at top Lance uses the phrase "it looks to me", which looks to me like an intuition marker. So it seems to me that an intuition is a seeming ("intellectual seeming" is redundant), which is something you are inclined to believe, agree with, or act as if you believe, but if asked why you believe that thing you wouldn't be able to articulate a clear answer, at least not without doing some serious work first.
 
In this episode, https://www.youtube.com/watch?v=yVFuRH--n2o,  roughly around the 1h:30m mark, Alex Malpass says that intuitions are unreliable and count very little, with seemings acting as something of a practical tool for moving on from intractable problems of skepticism. I'm inclined to agree with that, though I think Huemer would accuse Malpass of self-defeat because Malpass is relying on his seemings when downplaying seemings.
 
In any case, if intuitions are beliefs you believe but can't quite articulate why, then they are in a sense unjustified beliefs (using a reasons-based sense of justification). But if you hold the belief only very lightly, then you're not making the mistake of believing in a way that's disproportionate to the evidence or reasons to believe.
 
It can be worth holding onto beliefs you can't articulate reasons for because 1) you can't help but hold the belief, even if only very lightly, and 2) there may be reasons within the vicinity that do justify that belief, reasons that explain why it was that the belief seemed true to you to begin with.
 
So with intuitions there's this idea of subconscious belief or subconscious understanding involved; to have an intuition is to be subconsciously aware of certain reasons to believe something, but those reasons are not explicit in your mind. (Haven't you had the experience of reading a philosopher who articulates something you already agreed with, but couldn't articulate?) 
 
Back in school sometimes I would answer a math question intuitively. If you were to ask me "Why is that your answer?", I would have said "I don't know, but it feels right", and often I would get math questions right when operating by this feeling. Similarly we hear of "intuition-based" chess players who don't calculate captures or board-states but instead play moves that feel strong and avoid moves that feel weak. It's possible to be subconsciously attuned to a truth without being able to consciously explain it, which is why intuitions are worth exploring to bring out the understanding (or misunderstanding) that was lying underneath.
 
But I'd agree with Malpass (or what I take he'd agree with) that until that exploration has been done, and the reasons for the belief are uncovered, the intuition by itself is not worth anything other than as a jumping off point.

Thursday, October 10, 2024

Physical possibility vs Metaphysical possibility vs Logical possibility

We start with three kinds of possibility: Physical, metaphysical, and logical.

Alex Malpass says he's not sure what the difference is between metaphysical and physical possibility. https://www.youtube.com/watch?v=tsErbEt9MOQ - 52 minutes

I have been frustrated by this same question. When I hear someone describe something as metaphysically impossible, it just sounds like it's physically or logically impossible to me. As Alex Malpass gestures toward in the interview, we might put it like this:

Do the laws of logic exist? Yes. That which is logically impossible is that which violates the laws of logic.
 
Do the laws of nature exist? Yes. That which is physically impossible is that which violates the laws of nature.
 
Do the laws of metaphysics exist? Uh... no? What would those be? (You might think of principles like causal finitism or the principle of sufficient reason as being (alleged) metaphysical laws. But I'm not sure.)

I have found what I think is the first place I've heard of the distinction: William Lane Craig's 2016 Question of the Week #463. https://www.reasonablefaith.org/writings/question-answer/struggling-with-the-ontological-argument

Here Craig shares what Plantinga calls 'narrow logical possibility' versus 'broad logical possibility'. The idea seems to be that contradictions are explicitly in the form of A & ~A, but there are some things which are impossible and yet not explicitly contradictory. We might say they are implicitly contradictory, but not explicitly so. But this would mean metaphysical impossibility = implicit logical impossibility. So this would reduce metaphysical possibility to logical possibility.

Plantinga gives the example of a Prime Minister made out of prime numbers. This doesn't involve an explicit contradiction (you're not saying it's a Prime Minister that is not a Prime Minister), but it does involve an implicit one (prime numbers, which cannot materially constitute anything, do materially constitute a Prime Minister; or, that-which-cannot-be-made-out-of-numbers is made out of numbers).

(Maybe: numerical properties are immaterially causal, because they play a causal role in the bringing about of contingent immaterial objects, namely our thoughts about them. But numerical properties cannot play any kind of material causal role, because they are immaterial. Except substance dualists say that our thoughts, though immaterial, do play a material causal role, as they have effects on our bodies.)

I take it then that Craig would say that square circles and married bachelors are implicit contradictions, and therefore metaphysically impossible. Because square circles and married bachelors are so clearly contradictory, it's easy to take them as logically impossible. But you still have to tease out the contradiction: a square circle is an object-with-no-angles with angles (or an object-with-angles without angles). A married bachelor is a man-who-is-not-married who is married.

So that's one option: reduce metaphysical possibility to logical possibility by defining the former as implicit logical possibility and the latter as explicit logical possibility.

In the interview, Wes Morriston gestures toward the idea that metaphysical possibility has to do with the possibility that the laws of nature could have been different. So 'metaphysically possible' means something like "Physically possible according to a counterfactual set of laws of nature".

But Malpass responds, suggesting something roughly along the following:

Something is logically possible if it's consistent. So as long as there's a set of the laws of nature that are consistent, then we have a logically possible set of laws.

But if 'metaphysically impossible' means "possible according to an impossible set of laws of nature", then 'metaphysically impossible' means "possible according to a logically impossible set of laws of nature". But if something is possible only in a logically impossible scenario, then it's logically impossible. So metaphysical impossibility again reduces to logical impossibility.

So we can get down to just two kinds of possibility: physical and logical. But can we reduce things farther? Maybe.

Because of the problem of contingency, I suspect we need a necessary foundation of the universe. This will entail necessary laws of nature (this is debatable; I'm going with Graham Oppy who chooses the 'necessity' explanation in the face of contingency, fine-tuning, and the uncanny applicability of mathematics). 

The argument from contingency is a logical argument, so if it succeeds, then it will be logically necessary that there is this foundation. This will then logically entail the laws of nature (again, debatable). That would mean necessitarianism is true and all counterfactual sets of laws of nature are logically impossible (I don't mean to suggest Oppy thinks necessitarianism is true. Here I'm invoking Amy Karofsky).

If all of that works, then it's logically necessary that the foundation of the universe be what it is, it's logically necessary that this foundation would produce the laws of nature it does, and thus the laws of nature themselves are logically necessary. All counterfactual sets of laws of nature would be not only impossible, but logically so, as ultimately they lead to the contradiction of saying the logically necessary foundation has its particular nature and does not have its particular nature. But then that would mean what's physically impossible just is what's logically impossible.

Sure, we can imagine physically impossible things in a way we cannot imagine logically impossible things. But some things have their logical impossibility more and less immediately accessible; some things are more obviously contradictory than others. That's the point of the distinction of explicit vs implicit contradictions. So physically impossible things are not ultimately consistent, but they are apparently consistent at first. That "surface level consistency" is why we can imagine some impossible things to some degree, but other impossible things cannot be imagined to any degree.

We can imagine a group of people who stumble upon the idea of a square circle. They can conceive of a square circle... partially. They can conceive of its squareness. They can conceive of its circularity. But they cannot conceive the whole thing all at once. They are unsure whether the object is impossible or not, because they must first investigate all that it means to be a square and all that it means to be a circle. At first, they cannot see the contradiction. Eventually, through investigation, they realize that circles cannot have angles, and squares must have four right angles, and thus by definition the square circle is self-referentially incoherent; it's a contradiction.

That could be like us with God. Because of the ontological argument, God is either metaphysically necessary or metaphysically impossible. Which, per the above discussion, means God's existence is either implicitly contradictory, or God's non-existence is implicitly contradictory. No one thinks God's existence or non-existence is explicitly contradictory. God is, and has been, a common belief among humans. So clearly we can at least imagine God partially. But even Christians emphasize how we cannot conceive of God in God's entirety; God is too great a being for our earthly minds to comprehend. So like the simple people and the square circle, we must investigate all that it means for something to be God, and see if there are any contradictions therein. This is the area of philosophy called the coherence of theism, and many tensions have been noted between God's attributes. Some philosophers suspect that God is incoherent (if you're an atheist, then you must suspect this, because if God does not exist, then God is impossible per the ontological argument), and some may even outright argue that way. But I don't think any philosopher would say God is as obviously incoherent as a square circle or a married bachelor.

I've heard of the distinction between something being epistemically possible versus logically possible. If something is epistemically possible, then that means, for all I know, or for all I can tell, that thing is possible. In the case of the simple people and the square circle, the existence of the square circle was epistemically possible for them; for all they knew, there were square circles. But after they conducted their investigation, square circles became epistemically impossible; they came to see that they cannot exist. Likewise, some objects could be epistemically possible to us at first until investigation reveals they are not. While it's easy to see the whole picture when it comes to square circles or married bachelors, and thereby see their impossibility, it's much harder to see the whole picture when it comes to more complicated ideas like God.

So when we imagine fictional objects like Harry Potter and Hogwarts, we can imagine these things to a degree. They aren't explicitly contradictory. But really we are only partially imagining them. We run into problems when we try to really take Harry Potter seriously. Think of all the parodies made and plot holes pointed out about Harry Potter. This is how it is for any fiction (and, dare I say, for theology) when you take it too seriously. It falls apart and stops making sense. To truly imagine fictional stories as real, we'd have to imagine history having unfolded differently. We'd have to imagine different laws of physics, ones that allow magic or sci-fi technology. When fans ask lore questions, they are testing the fictional world in exactly this way, for consistency, and to see how far they can make sense of the fictional world. The more sensible the fictional world is, the more seriously we can take it. The less sensible the fictional world is, the more vulnerable it is to parody.

I cannot fully comprehend the real universe, so of course I cannot fully imagine a counterfactual universe down to the smallest detail, which is what I'd have to do to take any fiction fully seriously. This is why we can only partially imagine fictional objects, why they are only partially possible. To imagine the fictional whole, we'd have to imagine a different past and different laws of nature, which would mean imagining, via the argument from contingency, the logically necessary foundation of the universe being what it must be and not being what it must be at the same time. And there we have our contradiction, reducing physical possibility to logical possibility.

***

Since I'm going through Alyssa Ney's introduction to metaphysics, I might as well record what she says about possibility. In chapter 10, on modality, she gives two definitions:

Nomological possibility: What's possible according to the laws of nature. (nomos means law in Greek)

Logical possibility: What does not entail any contradiction.

Notably, Ney uses round squares and married bachelors as examples of logically impossible things. She uses the example of an object moving faster than the speed of light as an example of a logically possible but physically impossible thing (special relativity precludes it).

Ney never mentions metaphysical possibility.

Alex O'Connor recently uploaded a video questioning where the laws of logic come from. They "come from" the necessary foundation of reality, or are part of it. But it does sound weird to say the laws of logic are logically necessary. That sounds circular. But if we just say the laws of logic are necessary, it sounds like we're saying the laws of logic are metaphysically necessary. But we can't say that if metaphysical necessity reduces to logical necessity.